首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   506篇
  免费   25篇
  国内免费   2篇
  2023年   4篇
  2022年   1篇
  2021年   9篇
  2020年   8篇
  2019年   15篇
  2018年   8篇
  2017年   9篇
  2016年   12篇
  2015年   23篇
  2014年   27篇
  2013年   39篇
  2012年   49篇
  2011年   35篇
  2010年   28篇
  2009年   25篇
  2008年   30篇
  2007年   24篇
  2006年   19篇
  2005年   25篇
  2004年   28篇
  2003年   7篇
  2002年   14篇
  2001年   9篇
  2000年   13篇
  1999年   10篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   8篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有533条查询结果,搜索用时 35 毫秒
91.
CXCR4 is a chemokine receptor which has been shown to be exploited by various tumors for increased survival, invasion, and homing to target organs. We developed a one step radiosynthesis for labeling the CXCR4-specific antagonist AMD3100 with Cu-64 to produce 64Cu-AMD3100 with a specific activity of 11.28 Ci/μmol (417 GBq/μmol) at the end of radiosynthesis. Incorporation of Cu(II) ion into AMD3100 did not change its ability to inhibit cellular migration in response to the (only) CXCR4 ligand, SDF-1/CXCL12. 64Cu-AMD3100 binding affinity to CXCR4 was found to be 62.7 μM. Biodistribution of 64Cu-AMD3100 showed accumulation in CXCR4-expressing organs and tissues, a renal clearance pathway, and an anomalous specific accumulation in the liver. We conclude that 64Cu-AMD3100 exhibits promise as a potential PET imaging agent for visualization of CXCR4-positive tumors and metastases and might be used to guide and monitor anti-CXCR4 tumor therapy.  相似文献   
92.
We examined in HepG2 cells whether glucose-induced changes in AMP-activated protein kinase (AMPK) activity could be mediated by SIRT1, an NAD+-dependent histone/protein deacetylase that has been linked to the increase in longevity caused by caloric restriction. Incubation with 25 vs. 5 mM glucose for 6 h concurrently diminished the phosphorylation of AMPK (Thr 172) and ACC (Ser 79), increased lactate release, and decreased the abundance and activity of SIRT1. In contrast, incubation with pyruvate (0.1 and 1 mM) for 2 h increased AMPK phosphorylation and SIRT1 abundance and activity. The putative SIRT1 activators resveratrol and quercetin also increased AMPK phosphorylation. None of the tested compounds (low or high glucose, pyruvate, and resveratrol) significantly altered the AMP/ATP ratio. Collectively, these findings raise the possibility that glucose-induced changes in AMPK are linked to alterations in SIRT1 abundance and activity and possibly cellular redox state.  相似文献   
93.
The unripe fruits of certain species are red. Some of these species disperse their seeds by wind (Nerium oleander, Anabasis articulata), others by adhering to animals with their spines (Emex spinosa) or prickles (Hedysarum spinosissimum). Certainly neither type uses red coloration as advertisement to attract the seed dispersing agents. Fleshy-fruited species (Rhamnus alaternus, Rubus sanguineus and Pistacia sp.), which disperse their seeds via frugivores, change fruit color from green to red while still unripe and then to black or dark blue upon ripening. The red color does not seem to function primarily in dispersal (unless red fruits form advertisement flags when there are already black ripe fruits on the plant) because the red unripe fruits of these species are poisonous, spiny, or unpalatable. The unripe red fruits of Nerium oleander are very poisonous, those of Rhamnus alaternus and Anabasis articulata are moderately poisonous, those of Rubus sanguineus are very sour, those of Pistacia sp. contain unpalatable resin and those of Emex spinosa and Hedysarum spinosissimum are prickly. We propose that these unripe red fruits are aposematic, protecting them from herbivory before seed maturation.  相似文献   
94.
It is now clear that mechanisms of sex determination are extraordinarily labile, with considerable variation across all taxonomic levels. This variation is often expressed through differences in the genetic system (XX‐XY, XX‐XO, haplodiploidy, and so on). Why there is so much variation in such a seemingly fundamental process has attracted much attention, with recent ideas concentrating on the possible role of genomic conflicts of interest. Here we consider the role of inter‐ and intra‐genomic conflicts in one large insect taxon: the scale insects. Scale insects exhibit a dizzying array of genetic systems, and their biology promotes conflicts of interest over transmission and sex ratio between male‐ and female‐expressed genes, parental‐ and offspring‐expressed genes (both examples of intra‐genomic conflict) and between scale insects and their endosymbionts (inter‐genomic conflict). We first review the wide range of genetic systems found in scale insects and the possible evolutionary transitions between them. We then outline the theoretical opportunities for genomic conflicts in this group and how these might influence sex determination and sex ratio. We then consider the evidence for these conflicts in the evolution of sex determination in scale insects. Importantly, the evolution of novel genetic systems in scale insects has itself helped create new conflicts of interest, for instance over sex ratio. As a result, a major obstacle to our understanding of the role of conflict in the evolution of sex‐determination and genetic systems will be the difficulty in identifying the direction of causal relationships. We conclude by outlining possible experimental and comparative approaches to test more effectively how important genomic conflicts have been.  相似文献   
95.

Background

Adult rats exposed to methylazoxymethanol (MAM) at embryonic day 17 (E17) consistently display behavioral characteristics similar to that observed in patients with schizophrenia and replicate neuropathological findings from the prefrontal cortex of psychotic individuals. However, a systematic neuropathological analysis of the hippocampal formation and the thalamus in these rats is lacking. It is also unclear if reelin, a protein consistently associated with schizophrenia and potentially involved in the mechanism of action of MAM, participates in the neuropathological effects of this compound. Therefore, a thorough assessment including cytoarchitectural and neuromorphometric measurements of eleven brain regions was conducted. Numbers of reelin positive cells and reelin expression and methylation levels were also studied.

Principal Findings

Compared to untreated rats, MAM-exposed animals showed a reduction in the volume of entorhinal cortex, hippocampus and mediodorsal thalamus associated with decreased neuronal soma. The entorhinal cortex also showed laminar disorganization and neuronal clusters. Reelin methylation in the hippocampus was decreased whereas reelin positive neurons and reelin expression were unchanged.

Conclusions

Our results indicate that E17-MAM exposure reproduces findings from the hippocampal formation and the mediodorsal thalamus of patients with schizophrenia while providing little support for reelin''s involvement. Moreover, these results strongly suggest MAM-treated animals have a diminished neuropil, which likely arises from abnormal neurite formation; this supports a recently proposed pathophysiological hypothesis for schizophrenia.  相似文献   
96.
Different genetic systems can be both the cause and the consequence of genetic conflict over the transmission of genes, obscuring their evolutionary origin. For instance, with paternal genome elimination (PGE), found in some insects and mites, both sexes develop from fertilized eggs, but in males the paternally derived chromosomes are either lost (embryonic PGE) or deactivated (germline PGE) during embryogenesis and not transmitted to the next generation. Evolution of germline PGE requires two transitions: (1) elimination of the paternal genome during spermatogenesis; (2) deactivation of the paternal genome early in development. Hypotheses for the evolution of PGE have mainly focused on the first transition. However, maternal genes seem to be responsible for the deactivation and here we investigate if maternal suppression could have evolved in response to paternally expressed male suicide genes. We show that sibling competition can cause such genes to spread quickly and that inbreeding is necessary to prevent fixation of male suicide, and subsequent population extinction. Once male-suicide has evolved, maternally expressed suppressor genes can invade in the population. Our results highlight the rich opportunity for genetic conflict in asymmetric genetic systems and the counterintuitive phenotypes that can evolve as a result.  相似文献   
97.
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self‐splicing ribozyme and its own intron‐encoded maturase protein. A hallmark of maturases is that they are intron‐specific, acting as cofactors that bind their intron‐containing pre‐RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron‐encoded maturase open reading frames suggest that their splicing in vivo is assisted by ‘trans’‐acting protein factors. Interestingly, angiosperms harbor several nuclear‐encoded maturase‐related (nMat) genes that contain N‐terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.  相似文献   
98.

Objective

Klotho is an aging-modulating protein expressed mainly in the kidneys and choroid plexus, which can also be shed, released into the circulation and act as a hormone. Klotho deficient mice are smaller compared to their wild-type counterparts and their somatotropes show marked atrophy and reduced number of secretory granules. Recent data also indicated an association between klotho levels and growth hormone (GH) levels in acromegaly. We aimed to study the association between klotho levels and GH deficiency (GHD) in children with growth impairment.

Design

Prospective study comprising 99 children and adolescents (aged 9.0±3.7 years, 49 male) undergoing GH stimulation tests for short stature (height-SDS = −2.1±0.6). Klotho serum levels were measured using an α-klotho ELISA kit.

Results

Klotho levels were significantly lower (p<0.001) among children with organic GHD (n = 11, 727±273 pg/ml) compared to both GH sufficient participants (n = 59, 1497±754 pg/ml) and those with idiopathic GHD (n = 29, 1645±778 pg/ml). The difference between GHS children and children with idiopathic GHD was not significant. Klotho levels positively correlated with IGF-1- standard deviation scores (SDS) (R = 0.45, p<0.001), but were not associated with gender, pubertal status, age or anthropometric measurements.

Conclusions

We have shown, for the first time, an association between low serum klotho levels and organic GHD. If validated by additional studies, serum klotho may serve as novel biomarker of organic GHD.  相似文献   
99.
In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus’ fruits diets. Acomys russatus, a predator of Ochradenus’ seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits’ toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.  相似文献   
100.
The extrinsic subunits of membrane-bound photosystem II (PSII) maintain an essential role in optimizing the water-splitting reaction of the oxygen-evolving complex (OEC), even though they have undergone drastic change during the evolution of oxyphototrophs from symbiotic cyanobacteria to chloroplasts. Two specific extrinsic proteins, PsbP and PsbQ, bind to the lumenal surface of PSII in green plants and maintain OEC conformation and stabilize overall enzymatic function; however, their precise location has not been fully resolved. In this study, PSII-enriched membranes, isolated from spinach, were subjected to chemical cross-linking combined with release-reconstitution experiments. We observed direct interactions between PsbP and PsbE, as well as with PsbR. Intriguingly, PsbP and PsbQ were further linked to the CP26 and CP43 light-harvesting proteins. In addition, two cross-linked sites, between PsbP and PsbR, and that of PsbP and CP26, were identified by tandem mass spectrometry. These data were used to estimate the binding topology and location of PsbP, and the putative positioning of PsbQ and PsbR on the lumenal surface of the PSII. Our model gives new insights into the organization of PSII extrinsic subunits in higher plants and their function in stabilizing the OEC of the PSII supercomplex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号